Автомат защиты электродвигателя
Для чего нужна защита двигателя?
Для того чтобы избежать непредвиденных сбоев, дорогостоящего ремонта и последующих потерь из-за простоя электродвигателя, очень важно оборудовать двигатель защитным устройством.
Защита двигателя имеет три уровня:
- Внешняя защита от короткого замыкания установки. Устройства внешней защиты, как правило, являются предохранителями разных видов или реле защиты от короткого замыкания. Защитные устройства данного типа обязательны и официально утверждены, они устанавливаются в соответствии с правилами безопасности.
- Внешняя защита от перегрузок, т.е. защита от перегрузок двигателя насоса, а, следовательно, предотвращение повреждений и сбоев в работе электродвигателя. Это защита по току.
- Встроенная защита двигателя с защитой от перегрева, чтобы избежать повреждений и сбоев в работе электродвигателя. Для встроенного устройства защиты всегда требуется внешний выключатель, а для некоторых типов встроенной защиты двигателя требуется даже реле перегрузки.
Возможные условия отказа двигателя
Во время эксплуатации могут возникать различные неисправности. Поэтому очень важно заранее предусмотреть возможность сбоя и его причины и как можно лучше защитить двигатель. Далее приведён перечень условий отказа, при которых можно избежать повреждений электродвигателя:
- Низкое качество электроснабжения
- Высокое напряжение
- Пониженное напряжение
- Несбалансированное напряжение/ ток (скачки)
- Изменение частоты
- Неверный монтаж, нарушение условий хранения или неисправность самого электродвигателя
- Постепенное повышение температуры и выход её за допустимый предел
- Недостаточное охлаждение
- Высокая температура окружающей среды
- Пониженное атмосферное давление (работа на большой высоте над уровнем моря)
- Высокая температура рабочей жидкости
- Слишком большая вязкость рабочей жидкости
- Частые включения/отключения электродвигателя
- Слишком большой момент инерции нагрузки (свой для каждого насоса)
- Резкое повышение температуры
- Блокировка ротора
- Обрыв фазы
Для защиты сети от перегрузок и короткого замыкания при возникновении каких-либо из перечисленных выше условий отказа необходимо определить, какое устройство защиты сети будет использоваться. Оно должно автоматически отключать питание от сети. Плавкий предохранитель является простейшим устройством, выполняющим две функции. Как правило, плавкие предохранители соединяются между собой при помощи аварийного выключателя, который может отключить двигатель от сети питания.
Плавкий предохранительный выключатель
Плавкий предохранительный выключатель - это аварийный выключатель и плавкий предохранитель, объединённые в едином корпусе. С помощью выключателя можно размыкать и замыкать цепь вручную, в то время как плавкий предохранитель защищает двигатель от перегрузок по току. Выключатели, как правило, используются в связи с выполнением сервисного обслуживания, когда необходимо прервать подачу тока.
Аварийный выключатель имеет отдельный кожух. Этот кожух защищает персонал от случайного контакта с электрическими клеммами, а также защищает выключатель от окисления. Некоторые аварийные выключатели оборудованы встроенными плавкими предохранителями, другие аварийные выключатели поставляются без встроенных плавких предохранителей и оснащены только выключателем.
Устройство защиты от перегрузок по току (плавкий предохранитель) должно различать перегрузки по току и короткое замыкание. Например, незначительные кратковременные перегрузки по току вполне допустимы. Но при дальнейшем увеличении тока устройство защиты должно срабатывать немедленно. Очень важно сразу предотвращать короткие замыкания. Выключатель с предохранителем - пример устройства, используемого для защиты от перегрузок по току. Правильно подобранные плавкие предохранители в выключателе размыкают цепь при токовых перегрузках.
Плавкие предохранители быстрого срабатывания
Быстродействующие плавкие предохранители обеспечивают отличную защиту от короткого замыкания. Однако кратковременные перегрузки, такие как пусковой ток электродвигателя, могут вызвать поломку плавких предохранителей такого вида. Поэтому быстродействующие плавкие предохранители лучше всего использовать в сетях, которые не подвержены действию значительных переходных токов. Обычно такие предохранители выдерживают около 500% своего номинального тока в течение одной четвёртой секунды. По истечении этого времени вставка предохранителя плавится и цепь размыкается. Таким образом, в цепях, где пусковой ток часто превышает 500% номинального тока предохранителя, быстродействующие плавкие предохранители использовать не рекомендуется.
Плавкие предохранители с задержкой срабатывания
Данный тип плавких предохранителей обеспечивает защиту и от перегрузки, и от короткого замыкания. Как правило, они допускают 5-кратное увеличение номинального тока на 10 секунд, и даже более высокие значения тока на более короткое время. Обычно этого достаточно, чтобы электродвигатель был запущен и плавкий предохранитель не открылся. С другой стороны, если возникают перегрузки, которые продолжаются больше, чем время плавления плавкого элемента, цепь также разомкнётся.
Время срабатывания плавкого предохранителя
Время срабатывания плавкого предохранителя - это время плавления плавкого элемента (проволоки), которое требуется для того, чтобы цепь разомкнулась. У плавких предохранителей время срабатывания обратно пропорционально значению тока - это означает, что чем больше перегрузки по току, тем меньше период времени для отключения цепи.
В общем, можно сказать, что у электродвигателей насосов очень короткое время разгона: меньше 1 секунды. В этой связи для электродвигателей подойдут предохранители с задержкой времени срабатывания с номинальным током, соответствующим току полной нагрузки электродвигателя.
Во время пуска через индукционный электродвигатель проходит достаточно большой ток. В очень редких случаях это приводит к выключению посредством реле или плавких предохранителей. Для уменьшения пускового тока используются различные методы пуска электродвигателя.
Функции реле перегрузки
Реле перегрузки:
- При пуске электродвигателя позволяют выдерживать временные перегрузки без разрыва цепи.
- Размыкают цепь электродвигателя, если ток превышает предельно допустимое значение и возникает угроза повреждения электродвигателя.
- Устанавливаются в исходное положение автоматически или вручную после устранения перегрузки.
IEC и NEMA стандартизуют классы срабатывания реле перегрузки.
Обозначение класса срабатывания
Как правило, реле перегрузки реагируют на условия перегрузки в соответствии с характеристикой срабатывания. Для любого стандарта (NEMA или IEC) деление изделий на классы определяет, какой период времени требуется реле на размыкание при перегрузке. Наиболее часто встречающиеся классы: 10, 20 и 30. Цифровое обозначение отражает время, необходимое реле для срабатывания. Реле перегрузки класса 10 срабатывает в течение 10 секунд и менее при 600% тока полной нагрузки, реле класса 20 срабатывает в течение 20 секунд и менее, а реле класса 30 - в течение 30 секунд и менее.
Угол наклона характеристики срабатывания зависит от класса защиты электродвигателя. Электродвигатели IEC обычно адаптированы к определённому варианту использования. Это означает, что реле перегрузки может справляться с избыточным током, величина которого очень близка к максимальной производительности реле. Класс 10 - самый распространённый класс для электродвигателей IEC. Электродвигатели NEMA имеют внутренний конденсатор большей ёмкости, поэтому класс 20 для них применяется чаще.
Реле класса 10 обычно используется для электродвигателей насосов, так как время разгона электродвигателей составляет около 0,1-1 секунды. Для многих высокоинерционных промышленных нагрузок необходимо для срабатывания реле класса 20.
Сочетание плавких предохранителей с реле перегрузки
Плавкие предохранители служат для того, чтобы защитить установку от повреждений, которые могут быть вызваны коротким замыканием. В связи с этим плавкие предохранители должны иметь достаточную ёмкость. Более низкие токи изолируются с помощью реле перегрузки. Здесь номинальный ток плавкого предохранителя соответствует не рабочему диапазону электродвигателя, а току, который может повредить наиболее слабые составляющие установки. Как было упомянуто ранее, плавкий предохранитель обеспечивает защиту от короткого замыкания, но не защиту от перегрузок при низком токе.
Очень важно, чтобы плавкий предохранитель сработал прежде, чем другие детали установки получат тепловое повреждение в результате короткого замыкания.
Что такое автоматический токовый выключатель и как он работает?
Автоматический токовый выключатель является устройством защиты от перегрузок по току. Он автоматически размыкает и замыкает цепь при заданном значении перегрузки по току. Если токовый выключатель применяется в диапазоне своих рабочих параметров, размыкание и замыкание не наносит ему никакого ущерба. Сразу же после возникновения перегрузки можно легко возобновить работу автоматического выключателя - он просто устанавливается в исходное положение. Различают два вида автоматических выключателей: тепловые и магнитные.
Тепловые автоматические выключатели
Тепловые автоматические выключатели - это самый надёжный и экономичный тип защитных устройств, которые подходят для электродвигателей. Они могут выдержать большие амплитуды тока, которые возникают при пуске электродвигателя, и защищают электродвигатель от сбоев, таких как блокировка ротора.
Магнитные автоматические выключатели
Магнитные автоматические выключатели являются точными, надёжными и экономичными. Магнитный автоматический выключатель устойчив к изменениям температуры, т.е. изменения температуры окружающей среды не влияют на его предел срабатывания. По сравнению с тепловыми автоматическими выключателями, магнитные автоматические выключатели имеют более точно определённое время срабатывания. В таблице приведены характеристики двух типов автоматических выключателей.
Рабочий диапазон автоматического выключателя
Автоматические выключатели различаются между собой уровнем тока срабатывания. Это значит, что всегда следует выбирать такой автоматический выключатель, который может выдержать самый высокий ток короткого замыкания, который может возникнуть в данной системе.
Конструкция реле
Современный рынок электрооборудования предлагает огромный выбор тепловых реле различного принципа действия, как следствие, будет отличаться и их конструктивное исполнение. Однако, в соответствии с п.3.2. ГОСТ 16308-84 все технические параметры конкретной модели должны соответствовать данному типу по габаритам, исполнению и принципиальной схеме этого типа. Наиболее распространенным вариантом за счет простоты исполнения и относительной дешевизны является электротепловое реле на биметаллической пластине. Конструкция которого приведена
В состав механизма входят:
- Нагревательный элемент – токоведущая часть, пропускающая через себя рабочий ток электрической машины;
- Биметаллическая пластина – выступает в роли действующего индикатора, реагирующего на превышение температуры;
- Толкатель – выполняет функции жесткого рычага, передающего усилие от биметаллической пластины;
- Температурный компенсатор – позволяет внести поправку на температуру окружающей среды для стабилизации величины тока срабатывания;
- Защелка – предназначена для фиксации положения температурного реле;
- Штанга расцепителя – подвижная часть механизма, предназначенного для перемещения контактов;
- Контакты реле – передают питание в блок управления;
- Пружина – создает усилие для перемещения реле в устойчивое положение.
На практике существуют и другие типы реле, конструкция которых будет принципиально отличаться. Данный вариант приведен в качестве примера для наглядности протекания процессов и пояснения принципа работы.
Технические характеристики
Корректная работа релейной защиты обеспечивается за счет соответствия параметров теплового устройства заданным условиям работы электрической машины. Поэтому важно изучить основные рабочие параметры реле еще до его приобретения. К основным техническим данным теплового реле относятся:
- Величина номинального напряжения и частота на которые оно рассчитано;
- Время-токовая характеристика – определяет время срабатывания при установленной кратности превышения;
- Время возврата теплового элемента в исходное положение;
- Диапазон изменения тока уставки;
- Тепловая устойчивость к превышению рабочей величины;
- Климатическое исполнение и степень пыле- влагозащищенности.
Виды тепловых реле
Современное разнообразие тепловых реле охватывает довольно широкий ассортимент. Поэтому деление на виды производится в соответствии с установленными критериями на основании п. 1.1. ГОСТ 16308-84. Так, по роду тока рабочей цепи все устройства подразделяются на две большие группы: реле переменного и постоянного тока. В зависимости от количества рабочих полюсов встречаются:
- Однополюсные – применяются для двигателей постоянного тока и других однофазных моделей;
- Двухполюсные – устанавливаются в трехфазную цепь, где контроль может осуществляться только по двум фазам;
- Трехполюсные – актуальны для мощных асинхронных агрегатов с короткозамкнутым ротором.
В зависимости от типа контактов вторичных цепей все тепловые приборы подразделяются на модели:
- Только с замыкающим контактом;
- Только с размыкающим контактом;
- И с замыкающим, и с размыкающим контактом;
- С переключающими;
В зависимости от способа возврата теплового реле в исходное положение существуют варианты с включением вручную или с самостоятельным возвратом. Также в моделях может реализовываться функция перевода с одного вида работы на другой.
Также существует разделение по наличию или отсутствию приспособления для компенсации температуры окружающего пространства. И модели с возможностью регулировки тока несрабатывания или с отсутствием таковой функции.
Способы защиты электродвигателей
Защита от перегрузки
Перегрузка приводит к повышению тока обмоток. Если ток превысит номинальное значение для данного двигателя и условий работы, привод начнет перегреваться.
Для защиты от перегрузки по току используют тепловые реле и автоматы защиты. Настройка защитного устройства должна проводиться в соответствии с номинальным током двигателя. Если в нормальном режиме двигатель работает на мощности ниже номинальной, уставку теплового реле или автомата защиты целесообразно понизить, измерив рабочий ток привода.
Защита от короткого замыкания
Короткое замыкание (КЗ) может произойти не только в обмотке двигателя, но также в коробке с клеммами, в питающем кабеле или пусковой схеме. По этой причине целесообразно устанавливать защиту от КЗ на вводе питания пускателя. Обычно применяют предохранители и защитные автоматы, причем трехполюсные автоматы предпочтительнее, поскольку в случае аварии они полностью отключают питание от электродвигателя — при коротком замыкании срабатывает электромагнитный расцепитель.
Выход за пределы параметров питающего напряжения
Согласно ГОСТ 28173, электродвигатели могут эксплуатироваться при отклонении напряжения ±5% или отклонении частоты ±2%. При выходе за эти диапазоны мощность двигателя окажется ниже номинальной, поскольку температура обмоток статора может быть слишком высока.
Уровень напряжения контролируется с помощью реле контроля фаз, которые могут отключать двигатель в случае выхода напряжения по любой из фаз за установленные пределы. Дополнительные функции реле – контроль обрыва, чередования и асимметрии фаз.
Существуют также специализированные реле защиты двигателя, которые могут контролировать множество других параметров – перегруз или недогруз двигателя, асимметрию токов, перегрев и др.
Особенности защиты при питании двигателя через преобразователь частоты, где напряжение и частота значительно отклоняются от номинала, будут рассмотрены ниже.
Защита от перегрева
Источник перегрева может находиться в обмотке статора, в роторе, подшипниках, в месте электрического подключения. Во всех перечисленных случаях тепловая энергия выделяется на корпусе электродвигателя. Как правило, источником нагрева является обмотка, поэтому температурные датчики обычно устанавливают около нее, в лобовой части двигателя, которая меньше всего охлаждается вентилятором обдува.
В качестве датчиков используют полупроводниковые PTC терморезисторы (термисторы или позисторы). Термисторная защита наиболее эффективна, поскольку реагирует на все возможные причины возникновения перегрева — заклинивание подшипников или нагрузки (быстрое нагревание), перегрузка, обрыв фазы или плохое охлаждение (медленное нагревание).
Стандартное сопротивление позистора при температуре +25°С должно быть не более 300 Ом. При повышении температуры до пороговой сопротивление резко возрастает до значений более 2 кОм.
Если электродвигатель расположен в ответственном месте, целесообразно установить несколько датчиков внутри него и на корпусе с целью постоянного мониторинга и быстрого реагирования на внештатные ситуации.
Для защиты от перегрева корпуса очень важно обеспечить правильную работу воздушного охлаждения. В системе охлаждения используется вентилятор обдува, крыльчатка которого насажена на вал электродвигателя. Эффективность обдува снижается с повышением температуры окружающей среды. Рабочая мощность двигателя может быть равна номинальной при температуре среды не выше 40°С.
При повышении температуры воздуха мощность на валу должна быть снижена, иначе двигатель начнет перегреваться. Так, при температуре окружающей среды +60°С мощность не должна превышать 82% от номинала.
На перегрев двигателя также влияет высота его установки над уровнем моря. Это связано с меньшей эффективностью отбора тепла воздушным потоком на больших высотах. Например, если на высотах до 1000 м рабочая мощность может быть равна номинальной, то на высоте 4000 м мощность необходимо снизить до 80%.
На большой высоте и при высокой температуре окружающей среды можно не понижать механическую мощность , если обеспечить принудительное интенсивное охлаждение. Более того, при интенсивном охлаждении и нормальных условиях работы можно добиться мощности выше номинала. В таких случаях нужно уделить особое внимание мониторингу температуры двигателя.
Характеристики датчиков температурной защиты
Двигатели с датчиками температурной защиты имеют встроенные в каждую фазу обмотки и соединённые последовательно терморезисторы типа СТ14-2-145 по ТУ11-85 ОЖО468.165ТУ или другие терморезисторы с аналогичными параметрами.
В вводном устройстве двигателей предусмотрены клеммы для подсоединения цепи терморезисторов к исполнительному устройству температурной защиты.
Температура срабатывания датчиков температурной защиты:
Класс нагревостойкости изоляции двигателя | Обозначения типа позистора по ТУ11-85 ОЖО468.165ТУ | Пороговая температура срабатывания позистора, град. С. |
B | CТ-14А-2-130 | 130 |
F | CТ-14А-2-145 | 145 |
H | CТ-14А-2-160 | 160 |
Время срабатывания защиты не превышает 15 с. Исполнительное устройство температурной защиты должно отключать силовую цепь двигателя при достижении сопротивления цепи термодатчиков 2100- 450 Ом.
Сопротивление одного позистора составляет 30 - 140 Ом при 25 градусах C, сопротивление цепи из 3 позисторов составляет 250±160 Ом.
Сопротивление изоляции цепи терморезисторов относительно обмоток статора двигателя при температуре окружающей среды (25 +5)°C составляет:
- В практически холодном состоянии двигателя находится в пределах от 120 до 480 Ом. Измерительное напряжение при контроле не более 2,5 В.
- В номинальном режиме работы двигателей при установившемся тепловом состоянии (температура обмотки двигателя <= 140 °C) не более 1650 Ом.
Напряжение, подаваемое на цепь терморезисторов, не более 7,5 В.
Исполнительные устройства
В качестве исполнительного устройства температурной защиты применяется любое устройство позволяющее отключать силовую цепь двигателя при достижении цепью терморезисторов сопротивления в диапазоне 1650-2400 Ом. Время срабатывания устройства температурной защиты при этом должно быть не более 1 с.
Защита двигателя при использовании частотного преобразователя
Преобразователь частоты – это электронное устройство, способное реализовать программно или аппаратно различные виды защиты.
Частотный преобразователь позволяет изменять скорость вращения вала. При этом изменяется не только частота питающего напряжения, но и величина напряжения. Важно правильно устанавливать рабочие точки на вольт-частотной характеристике двигателя.
В частном случае отношение напряжения к частоте является константой. Однако, исходя из принципов и задач регулирования, можно менять это отношение, изменяя форму кривой регулирования. Например, из-за понижения момента на низких частотах прибегают к увеличению минимального выходного напряжения, что, при злоупотреблении, может привести к перегреву.
При работе двигателя от частотного преобразователя, когда скорость вращения может быть гораздо меньше номинала, необходимо устанавливать принудительное независимое воздушное охлаждение