Мощность тока в обмотке электродвигателя и его сила в квт.
Размер шрифта
Цвет фона и шрифта
Изображения
Озвучивание текста
Обычная версия сайта
Системы Электропривода
8 (495) 122-20-33
8 (495) 122-20-33
Заказать звонок
E-mail
zakaz@reductors.com
Адрес
Центральный офис
117342, Город Москва,
вн.тер.г. муниципальный округ Коньково,
ул Обручева, д. 52, стр. 3

Сборочное производство и основной склад
440067, г. Пенза, ул. Чаадаева, д.46
Режим работы
Пн. – Пт.: с 9:00 до 18:00
Подобрать редуктор
Каталог
  • HMI панели
    • HV01
  • Мотор-редукторы с двигателями переменного тока
    • Коническо-цилиндрические
    • Планетарные
    • Цилиндрические
    • Цилиндро-червячные
    • Червячно-планетарные серии WMP
    • Червячные
  • Планетарные редукторы SPN
  • Преобразователи частоты
    • Общепромышленные преобразователи частоты
    • Опции и аксессуары к ПЧ
    • Специализированные преобразователи частоты
  • Программируемые контроллеры
    • HC10
  • Сервопривод
    • Сервосистема HS30
  • Спиральные конические редукторы
  • Мотор-редукторы с двигателями постоянного тока
    • Коническо-цилиндрические
    • Цилиндрические
    • Цилиндро-червячные
    • Червячные
  • Редукторы
    • Коническо-цилиндрические
    • Цилиндрические
    • Червячные
  • Вариаторы
    • Вариаторы VAM
    • Цилиндрические мотор-вариаторы CMGV
    • Червячные мотор-вариаторы CMV
  • Электродвигатели переменного тока
    • Двигатели Neri Motori однофазный асинхронный серии M
    • Двигатели Neri Motori с встроенным инвертором NERIDRIVE
    • Двигатели Neri Motori трёхфазные асинхронные серии AT с тормозом
    • Двигатели Neri Motori трёхфазные асинхронные серии MR
    • Двигатели Neri Motori трёхфазные асинхронные серии T
    • Двигатели TRANSTECNO трёхфазные асинхронные серии TS
    • Электродвигатели TRANSTECNO серии SM IP66
    • Электродвигатели СИСТЕМЫ ЭЛЕКТРОПРИВОДА
  • Электродвигатели постоянного тока
    • Бесколлекторные электродвигатели постоянного тока TRANSTECNO серии BL
    • Блоки управления электродвигателем BLD
    • Блоки управления электродвигателем PLN
    • Оптические энкодеры ME22
    • Электродвигатели TRANSTECNO с неодимовыми магнитами серии ND
    • Электродвигатели TRANSTECNO с ферритовыми магнитами серии EC
    • Электродвигатели постоянного тока серии GSD
  • Мотор-редукторы для отопительных котлов с автоматической подачей топлива
  • Высокоточные редукторы
    • Планетарные соосные редукторы
    • Планетарные угловые
    • Прецизионные планетарные редукторы EPB
    • Прецизионные планетарные редукторы EPL
  • MINITECNO компактные мотор-редукторы
    • Компактные мотор-редукторы с бесколлеторными двигателями BL
    • Компактные мотор-редукторы с двигателями переменного тока SM
    • Компактные мотор-редукторы с ферритовыми ЕС и неодимовыми ND двигателями
  • Мотор-редукторы для систем кормораздачи
  • Мотор-редукторы для автомоек
Компания
  • О компании
  • Реквизиты
  • Вакансии
  • Галерея
  • Производители
Контакты
Информация
  • Опросный лист
  • Каталоги оборудования (PDF)
  • Инструкции
  • Сертификаты
  • 3D-конфигуратор
Сервис
Акции
Полезное
  • Отзывы
  • Сертификаты
  • Галерея
  • ...
    zakaz@reductors.com
    8 (495) 122-20-33
    8 (495) 122-20-33
    Заказать звонок
    E-mail
    zakaz@reductors.com
    Адрес
    Центральный офис
    117342, Город Москва,
    вн.тер.г. муниципальный округ Коньково,
    ул Обручева, д. 52, стр. 3

    Сборочное производство и основной склад
    440067, г. Пенза, ул. Чаадаева, д.46
    Режим работы
    Пн. – Пт.: с 9:00 до 18:00
    Заказать звонок
    Системы Электропривода
    Каталог
    • HMI панели
      HMI панели
      • HV01
    • Мотор-редукторы с двигателями переменного тока
      Мотор-редукторы с двигателями переменного тока
      • Коническо-цилиндрические
        • Коническо-цилиндрические К
        • Коническо-цилиндрические CMB
        • Коническо-цилиндрические ITB
      • Планетарные
        • Планетарные ACP
      • Цилиндрические
        • Цилиндрические с параллельными валами серии F
        • Соосно-цилиндрические R
        • Соосные CMG
        • Соосные ITH
        • Цилиндрические с параллельными валами ATS
        • Цилиндрические с параллельными валами FT
        • Цилиндрические с параллельными валами ITS
        • Цилиндрические с параллельными валами KFT
      • Цилиндро-червячные
        • Червячные с цилиндрической предступенью PCRV
        • Цилиндро-червячные CLP
        • Цилиндро-червячные CMP
        • Цилиндро-червячные CMPU
      • Червячно-планетарные серии WMP
      • Червячные
        • RV
        • S
        • Двухступенчатые RVE
        • Двухступенчатые CMM
        • Одноступенчатые CL
        • Одноступенчатые CM
    • Планетарные редукторы SPN
      Планетарные редукторы SPN
    • Преобразователи частоты
      Преобразователи частоты
      • Общепромышленные преобразователи частоты
        • Преобразователи частоты компактной серии HD09/HD09S
        • Преобразователи частоты производительной серии HD50
        • Преобразователи частоты универсальной серии HD30
      • Опции и аксессуары к ПЧ
        • Блок рекуперации HDRU
        • Платы ввода\вывода и энкодера
        • Пульты управления
        • Тормозной блок HDBU
      • Специализированные преобразователи частоты
        • Преобразователи частоты AQUA серии HD31
        • Преобразователи частоты защищенной серия HD3Z
        • Преобразователи частоты крановой серии HD50-TC
    • Программируемые контроллеры
      Программируемые контроллеры
      • HC10
    • Сервопривод
      Сервопривод
      • Сервосистема HS30
    • Спиральные конические редукторы
      Спиральные конические редукторы
    • Мотор-редукторы с двигателями постоянного тока
      Мотор-редукторы с двигателями постоянного тока
      • Коническо-цилиндрические
        • BLCMB
        • ECMB
        • NDCMB
      • Цилиндрические
        • С параллельными валами BLFT
        • С параллельными валами ECFT
        • С параллельными валами NDFT
        • Соосные ECMG
        • Соосные NDCMG
      • Цилиндро-червячные
        • ECMP
        • NDCMP
      • Червячные
        • Двухступенчатые ECMM
        • Одноступенчатые BLCM
        • Одноступенчатые ECM
        • Одноступенчатые NDCM
    • Редукторы
      Редукторы
      • Коническо-цилиндрические
      • Цилиндрические
      • Червячные
    • Вариаторы
      Вариаторы
      • Вариаторы VAM
      • Цилиндрические мотор-вариаторы CMGV
      • Червячные мотор-вариаторы CMV
    • Электродвигатели переменного тока
      Электродвигатели переменного тока
      • Двигатели Neri Motori однофазный асинхронный серии M
      • Двигатели Neri Motori с встроенным инвертором NERIDRIVE
      • Двигатели Neri Motori трёхфазные асинхронные серии AT с тормозом
      • Двигатели Neri Motori трёхфазные асинхронные серии MR
      • Двигатели Neri Motori трёхфазные асинхронные серии T
      • Двигатели TRANSTECNO трёхфазные асинхронные серии TS
      • Электродвигатели TRANSTECNO серии SM IP66
      • Электродвигатели СИСТЕМЫ ЭЛЕКТРОПРИВОДА
    • Электродвигатели постоянного тока
      Электродвигатели постоянного тока
      • Бесколлекторные электродвигатели постоянного тока TRANSTECNO серии BL
      • Блоки управления электродвигателем BLD
      • Блоки управления электродвигателем PLN
      • Оптические энкодеры ME22
      • Электродвигатели TRANSTECNO с неодимовыми магнитами серии ND
      • Электродвигатели TRANSTECNO с ферритовыми магнитами серии EC
      • Электродвигатели постоянного тока серии GSD
    • Мотор-редукторы для отопительных котлов с автоматической подачей топлива
      Мотор-редукторы для отопительных котлов с автоматической подачей топлива
    • Высокоточные редукторы
      Высокоточные редукторы
      • Планетарные соосные редукторы
      • Планетарные угловые
      • Прецизионные планетарные редукторы EPB
      • Прецизионные планетарные редукторы EPL
    • MINITECNO компактные мотор-редукторы
      MINITECNO компактные мотор-редукторы
      • Компактные мотор-редукторы с бесколлеторными двигателями BL
      • Компактные мотор-редукторы с двигателями переменного тока SM
      • Компактные мотор-редукторы с ферритовыми ЕС и неодимовыми ND двигателями
    • Мотор-редукторы для систем кормораздачи
      Мотор-редукторы для систем кормораздачи
    • Мотор-редукторы для автомоек
      Мотор-редукторы для автомоек
    Компания
    • О компании
    • Реквизиты
    • Вакансии
    • Галерея
    • Производители
    Контакты
    Информация
    • Опросный лист
    • Каталоги оборудования (PDF)
    • Инструкции
    • Сертификаты
    • 3D-конфигуратор
    Сервис
    Акции
    Полезное
      Подобрать редуктор
      Системы Электропривода
      8 (495) 122-20-33
      8 (495) 122-20-33
      Заказать звонок
      E-mail
      zakaz@reductors.com
      Адрес
      Центральный офис
      117342, Город Москва,
      вн.тер.г. муниципальный округ Коньково,
      ул Обручева, д. 52, стр. 3

      Сборочное производство и основной склад
      440067, г. Пенза, ул. Чаадаева, д.46
      Режим работы
      Пн. – Пт.: с 9:00 до 18:00
      Заказать звонок
      Подобрать редуктор
      Системы Электропривода
      Телефоны
      8 (495) 122-20-33
      Заказать звонок
      Системы Электропривода
      • Каталог
        • Каталог
        • HMI панели
          • HMI панели
          • HV01
        • Мотор-редукторы с двигателями переменного тока
          • Мотор-редукторы с двигателями переменного тока
          • Коническо-цилиндрические
            • Коническо-цилиндрические
            • Коническо-цилиндрические К
            • Коническо-цилиндрические CMB
            • Коническо-цилиндрические ITB
          • Планетарные
            • Планетарные
            • Планетарные ACP
          • Цилиндрические
            • Цилиндрические
            • Цилиндрические с параллельными валами серии F
            • Соосно-цилиндрические R
            • Соосные CMG
            • Соосные ITH
            • Цилиндрические с параллельными валами ATS
            • Цилиндрические с параллельными валами FT
            • Цилиндрические с параллельными валами ITS
            • Цилиндрические с параллельными валами KFT
          • Цилиндро-червячные
            • Цилиндро-червячные
            • Червячные с цилиндрической предступенью PCRV
            • Цилиндро-червячные CLP
            • Цилиндро-червячные CMP
            • Цилиндро-червячные CMPU
          • Червячно-планетарные серии WMP
          • Червячные
            • Червячные
            • RV
            • S
            • Двухступенчатые RVE
            • Двухступенчатые CMM
            • Одноступенчатые CL
            • Одноступенчатые CM
        • Планетарные редукторы SPN
        • Преобразователи частоты
          • Преобразователи частоты
          • Общепромышленные преобразователи частоты
            • Общепромышленные преобразователи частоты
            • Преобразователи частоты компактной серии HD09/HD09S
            • Преобразователи частоты производительной серии HD50
            • Преобразователи частоты универсальной серии HD30
          • Опции и аксессуары к ПЧ
            • Опции и аксессуары к ПЧ
            • Блок рекуперации HDRU
            • Платы ввода\вывода и энкодера
            • Пульты управления
            • Тормозной блок HDBU
          • Специализированные преобразователи частоты
            • Специализированные преобразователи частоты
            • Преобразователи частоты AQUA серии HD31
            • Преобразователи частоты защищенной серия HD3Z
            • Преобразователи частоты крановой серии HD50-TC
        • Программируемые контроллеры
          • Программируемые контроллеры
          • HC10
        • Сервопривод
          • Сервопривод
          • Сервосистема HS30
        • Спиральные конические редукторы
        • Мотор-редукторы с двигателями постоянного тока
          • Мотор-редукторы с двигателями постоянного тока
          • Коническо-цилиндрические
            • Коническо-цилиндрические
            • BLCMB
            • ECMB
            • NDCMB
          • Цилиндрические
            • Цилиндрические
            • С параллельными валами BLFT
            • С параллельными валами ECFT
            • С параллельными валами NDFT
            • Соосные ECMG
            • Соосные NDCMG
          • Цилиндро-червячные
            • Цилиндро-червячные
            • ECMP
            • NDCMP
          • Червячные
            • Червячные
            • Двухступенчатые ECMM
            • Одноступенчатые BLCM
            • Одноступенчатые ECM
            • Одноступенчатые NDCM
        • Редукторы
          • Редукторы
          • Коническо-цилиндрические
          • Цилиндрические
          • Червячные
        • Вариаторы
          • Вариаторы
          • Вариаторы VAM
          • Цилиндрические мотор-вариаторы CMGV
          • Червячные мотор-вариаторы CMV
        • Электродвигатели переменного тока
          • Электродвигатели переменного тока
          • Двигатели Neri Motori однофазный асинхронный серии M
          • Двигатели Neri Motori с встроенным инвертором NERIDRIVE
          • Двигатели Neri Motori трёхфазные асинхронные серии AT с тормозом
          • Двигатели Neri Motori трёхфазные асинхронные серии MR
          • Двигатели Neri Motori трёхфазные асинхронные серии T
          • Двигатели TRANSTECNO трёхфазные асинхронные серии TS
          • Электродвигатели TRANSTECNO серии SM IP66
          • Электродвигатели СИСТЕМЫ ЭЛЕКТРОПРИВОДА
        • Электродвигатели постоянного тока
          • Электродвигатели постоянного тока
          • Бесколлекторные электродвигатели постоянного тока TRANSTECNO серии BL
          • Блоки управления электродвигателем BLD
          • Блоки управления электродвигателем PLN
          • Оптические энкодеры ME22
          • Электродвигатели TRANSTECNO с неодимовыми магнитами серии ND
          • Электродвигатели TRANSTECNO с ферритовыми магнитами серии EC
          • Электродвигатели постоянного тока серии GSD
        • Мотор-редукторы для отопительных котлов с автоматической подачей топлива
        • Высокоточные редукторы
          • Высокоточные редукторы
          • Планетарные соосные редукторы
          • Планетарные угловые
          • Прецизионные планетарные редукторы EPB
          • Прецизионные планетарные редукторы EPL
        • MINITECNO компактные мотор-редукторы
          • MINITECNO компактные мотор-редукторы
          • Компактные мотор-редукторы с бесколлеторными двигателями BL
          • Компактные мотор-редукторы с двигателями переменного тока SM
          • Компактные мотор-редукторы с ферритовыми ЕС и неодимовыми ND двигателями
        • Мотор-редукторы для систем кормораздачи
        • Мотор-редукторы для автомоек
      • Компания
        • Компания
        • О компании
        • Реквизиты
        • Вакансии
        • Галерея
        • Производители
      • Контакты
      • Информация
        • Информация
        • Опросный лист
        • Каталоги оборудования (PDF)
        • Инструкции
        • Сертификаты
        • 3D-конфигуратор
      • Сервис
      • Акции
      • Полезное
      Подобрать редуктор
      • 8 (495) 122-20-33
        • Телефоны
        • 8 (495) 122-20-33
        • Заказать звонок
      • Центральный офис
        117342, Город Москва,
        вн.тер.г. муниципальный округ Коньково,
        ул Обручева, д. 52, стр. 3

        Сборочное производство и основной склад
        440067, г. Пенза, ул. Чаадаева, д.46
      • zakaz@reductors.com
      • Пн. – Пт.: с 9:00 до 18:00

      Мощность двигателя

      Главная
      —
      Статьи
      —
      Электродвигатели
      —Мощность двигателя
      Электродвигатели
      22 июля 2023

      Мощность двигателя

      Что такое электродвигатель?

      Электрический двигатель представляет собой устройство, которое преобразует электрическую энергию в механическую. Работа большинства агрегатов зависит от взаимодействия магнитного поля с обмоткой ротора, которая выражается в его вращении. Функционируют они от источников питания постоянного или переменного тока. В качестве питающего элемента может выступать аккумулятор, инвертор или розетка электросети. В некоторых случаях двигатель работает в обратном порядке, то есть преобразует механическую энергию в электрическую. Такие установки находят широкое применение на электростанциях, работающие от потока воздуха или воды.

      Электродвигатели классифицируют по типу источника питания, внутренней конструкции, применению и мощности. Также приводы переменного тока могут иметь специальные щетки. Они функционируют от однофазного, двухфазного или трехфазного напряжения, имеют воздушное или жидкостное охлаждение. Формула мощности электродвигателя переменного тока

      P = U х I,

      где P - мощность, U - напряжение, I - сила тока.

      Приводы общего назначения со своими размерами и характеристиками находят применение в промышленности. Самые большие двигатели мощностью более 100 Мегаватт используют на силовых установках кораблей, компрессорных и насосных станций. Меньшего размера используют в бытовых приборах, как пылесос или вентилятор.

      Общие характеристики двигателей

      Все моторы имеют общие параметры, которые используются в формуле определения мощности электродвигателя. На их основе можно рассчитать свойства машины. В разной литературе они могут называться по-разному, но означают они одно и то же. В список таких параметров входит:

      • Крутящий момент.
      • Мощность двигателя.
      • Коэффициент полезного действия.
      • Номинальное количество оборотов.
      • Момент инерции ротора.
      • Расчетное напряжение.
      • Электрическая константа времени.

      Вышеуказанные параметры необходимы, прежде всего, для определения эффективности электрических установок, работающих за счет механической силы двигателей. Расчетные величины дают лишь приблизительное представление о реальных характеристиках изделия. Однако эти показатели часто используют в формуле мощность электродвигателя. Именно она определяет результативность машин.

      Понятие мощности электродвигателя

      Мощность – пожалуй, самый важный параметр при выборе электродвигателя. Традиционно она указывается в киловаттах (кВт), у импортных моделей – в киловаттах и лошадиных силах (л.с., HP, Horse Power). Для справки: 1 л.с. приблизительно равна 0,75 кВт.

      На шильдике двигателя указана номинальная полезная (отдаваемая механическая) мощность. Это та мощность, которую двигатель может отдавать механической нагрузке с заявленными параметрами без перегрева. В формулах номинальная механическая мощность обозначается через Р2.

      Электрическая (потребляемая) мощность двигателя Р1 всегда больше отдаваемой Р2, поскольку в любом устройстве преобразования энергии существуют потери. Основные потери в электродвигателе – механические, обусловленные трением. Как известно из курса физики, потери в любом устройстве определяются через КПД (ƞ), который всегда менее 100%. 

      КПД в двигателях зависит от номинальной мощности – у маломощных моделей он может быть менее 0,75, у мощных превышает 0,95. Но, поскольку электродвигатель является активно-реактивной нагрузкой, для расчета полной потребляемой мощности S (с учетом реактивной составляющей) нужно учитывать реактивные потери. Реактивная составляющая выражается через коэффициент мощности (cosϕ). 

      Определение мощности электродвигателя без бирки

      При отсутствии техпаспорта или бирки на двигателе возникает вопрос: как узнать мощность электродвигателя без таблички или технической документации? Самые распространенные и быстрые способы:

      • По диаметру и длине вала;
      • По габаритам и крепежным размерам;
      • По сопротивлению обмоток;
      • По току холостого хода;
      • По току в клеммной коробке;
      • С помощью индукционного счетчика (для бытовых электродвигателей).

      Проверить мощность по габаритам и крепежным размерам

      По габаритным размерам

      Все электродвигатели отличаются по габаритным размерам. Определить мощность двигателя можно, сравнив габаритные размеры с таблицей определения мощности электродвигателя.

      Какие размеры необходимо замерить:

      • Длина, ширина, высота корпуса;
      • Расстояние от центра вала до пола;
      • Длина и диаметр вала;
      • Крепежные размеры по лапам (фланцу).

      По диаметру вала

      Определение мощности электродвигателя по диаметру вала — частый запрос для поисковых систем. Но для точного определения этого параметра недостаточно – два двигателя в одном габарите, с одинаковыми валами и частотой вращения могут иметь различную мощность.

      Простейшие способы определения мощности и марки двигателя – габаритные размеры – вал или крепежные отверстия. В таблице указаны длины и диаметры валов (D1) и длина (L1) для каждой модели асинхронного промышленного трехфазного мотора. 

      Р, кВт
      3000 об. мин 1500 об. мин 1000 об. мин 750 об. мин
      D1, мм L1, мм D1, мм L1, мм >D1, мм L1, мм D1, мм L1, мм
      1,5 22
      50
      22 50
      24 50 28 60
      2,2 24
      28 60 32
      80
      3 24 32
      80
      4 28
      60
      28 60 38
      5,5 32 80
      38
      7,5 32 80
      38
      48
      110
      11 38 48
      110
      15 42
      110
      48
      110
      55
      18,5 55 60
      140
      22 48
      55
      60
      >140
      30 65
      37 55
      >60
      140
      65 75
      45 75
      75
      55 65 80
      170
      75 65
      140
      75
      80
      170
      90 90
      110 70
      80
      170
      90
      132 100
      210
      160 75
      90
      100
      210
      200
      250 85
      170
      100
      210
      315 — —

      По показанию счетчика

      Как правило, измерение счетчика отображаются в киловаттах (далее кВт). Для точности измерения стоит отключить все электроприборы или воспользоваться портативным счетчиком. Мощность электродвигателя 2,2 кВт подразумевает, что он потребляет 2,2 кВт электроэнергии в час.

      Для измерения мощности по показанию счетчика нужно:

      1. Подключить мотор и дать ему поработать в течении 6 минут.
      2. Замеры счетчика умножить на 10 – получаем точную мощность электромотора.

      Расчет мощности по току

      Для начала нужно подключить двигатель к сети и замерить показатели напряжения. Замеряем потребляемый ток на каждой из обмоток фаз с помощью амперметра или мультиметра. Далее находим сумму токов трех фаз и умножаем на ранее замеренные показатели напряжения, наглядно в формуле расчета мощности электродвигателя по току.

      • P – мощность электродвигателя;
      • U – напряжение;
      • Ia – ток 1 фазы;
      • Ib – 2 фазы;
      • Ic – 3 фазы.

      Общая формула расчета мощности электродвигателя

      В основе расчёта мощности электродвигателя (кВт) используются нагрузки, которые он должен выдерживать, а также особенности работы конкретного приводного механизма (в частности, принимаются во внимание пиковые токи при их запуске). 

      Исходя из расчётов, рекомендуется закладывать 20-30 % запас по мощности, который позволит не допустить работы машины с перегрузом вне зависимости от особенностей технологического процесса. Таким образом, исключается вероятность интенсивного износа электродвигателя, снижения надёжности в работе оборудования.

      Общая формула расчета мощности электродвигателя может быть представлена как:

      P = dA ÷ dt, где:

      A - механическая (полезная) работа (энергия), Дж;

      t - затраченное время, сек.

      Мощность на валу электродвигателя определяется по следующей формуле:


      где:
      Рм – потребляемая механизмом мощность;
      ηп – КПД передачи.

      Номинальную мощность электродвигателя желательно выбирать больше расчетного значения.

      Формула расчета мощности электродвигателя для насоса:


      где:
      K3 – коэффициента запаса, он равен 1,1-1,3;
      g –ускорение свободного падения;
      Q – производительность насоса;
      H – высота подъема (расчетная);
      Y – плотность перекачиваемой насосом жидкости;
      ηнас – КПД насоса;
      ηп – КПД передачи.

      Формула расчета мощности электродвигателя для компрессора:

      Мощность поршневого компрессора легко рассчитать по следующей формуле:


      где:
      Q – производительность компрессора;
      ηk – индикаторный КПД поршневого компрессора (0,6-0,8);
      ηп – КПД передачи (0,9-0,95);
      K3 – коэффициент запаса (1,05 -1,15).

      Значение A можно рассчитать по формуле:


      Формула расчета мощности электродвигателя для вентиляторов:


      где:
      K3 – коэффициент запаса. Его значения зависят от мощности двигателя:

      • до 1 кВт – коэффициент 2;
      • от 1 до 2 кВт – коэффициент 1,5;
      • 5 и более кВт – коэффициент 1,1-1,2.

      Q – производительность вентилятора;
      H – давление на выходе;
      ηв – КПД вентилятора;
      ηп – КПД передачи.

      Приведенная формула используется для расчета мощности осевых и центробежных вентиляторов. КПД центробежных моделей равен 0,4-0,7, а осевых вентиляторов – 0,5-0,85.

      Остальные технические характеристики, необходимые для расчета мощности двигателя, можно найти в каталогах для каждого типа механизмов.

      ВАЖНО! При выборе электродвигателя запас мощности должен быть, но небольшой. При значительном запасе мощности снижается КПД привода. В электродвигателях переменного тока это приводит еще и к снижению коэффициента мощности.

      Мощность и нагрев двигателя

      Номинальная мощность обычно указывается для температуры окружающей среды 40°С и ограничена предельной температурой нагрева. Поскольку самым слабым местом в двигателе, с точки зрения перегрева, является изоляция, мощность ограничивается классом изоляции обмотки статора. Например, для наиболее распространенного класса изоляции F допустимый нагрев составляет 155°С при температуре окружающей среды 40°С.

      В документации на электродвигатели приводятся данные, из которых видно, что номинальная мощность двигателя падает при повышении температуры окружающей среды. С другой стороны, при должном охлаждении двигатели могут длительное время работать на мощности выше номинала.

      Мы рассмотрели потребляемую и отдаваемую мощности, но следует сказать, что реальная рабочая потребляемая мощность P (мощность на валу двигателя в данный момент) всегда должна быть меньше номинальной:

      Р < Р2 < Р1 < S

      Это необходимо для предотвращения перегрева двигателя и наличия запаса по перегрузке. Кратковременные перегрузки допустимы, но они ограничены прежде всего нагревом двигателя. Защиту двигателя по перегрузке также желательно устанавливать не по номинальному току (который прямо пропорционален мощности), а исходя из реального рабочего тока.

      Современные производители в основном выпускают двигатели из ряда номиналов: 1,5, 2,2, 5,5, 7,5, 11, 15, 18,5, 22 кВт и т.д.

      Мощность и вращающий момент электродвигателя

      Вы когда-нибудь пробовали провернуть вал пустого насоса руками? Теперь представьте, что вы поворачиваете его, когда насос заполнен водой. Вы почувствуете, что в этом случае, чтобы создать вращающий момент, требуется гораздо большее усилие.


      А теперь представьте, что вам надо крутить вал насоса несколько часов подряд. Вы бы устали быстрее, если бы насос был заполнен водой, и почувствовали бы, что потратили намного больше сил за тот же период времени, чем при выполнении тех же манипуляций с пустым насосом. Ваши наблюдения абсолютно верны: требуется большая мощность, которая является мерой работы (потраченной энергии) в единицу времени. 


      Вращающий момент (T) - это произведение силы на плечо силы. В Европе он измеряется в Ньютонах на метр (Нм).

      Как видно из формулы, вращающий момент увеличивается, если возрастает сила или плечо силы - или и то и другое. Например, если мы приложим к валу силу в 10 Н, эквивалентную 1 кг, при длине рычага (плече силы) 1 м, в результате, вращающий момент будет 10 Нм. При увеличении силы до 20 Н или 2 кг, вращающий момент будет 20 Нм. Таким же образом, вращающий момент был бы 20 Нм, если бы рычаг увеличился до 2 м, а сила составляла 10 Н. Или при вращающем моменте в 10 Нм с плечом силы 0,5 м сила должна быть 20 Н.


      Коэффициент полезного действия электромотора

      КПД - это характеристика, которая отражает эффективность работы системы при преобразовании энергии в механическую. Выражается отношением полезной энергии к потраченной. По единой системе единиц измерений он обозначается как "eta" и является безразмерным значением, исчисляемым в процентах. Формула КПД электродвигателя через мощность:

      eta = P2 ÷ P1, где:

      P1 - электрическая (подаваемая) мощность, Вт;

      P2 - полезная (механическая) мощность, Вт;

      Также он может быть выражен как:

      eta = A ÷ Q × 100 %, где:

      A - полезная работа, Дж;

      Q - затраченная энергия, Дж.

      Чаще коэффициент вычисляют по формуле потребляемой мощности электродвигателя, так как эти показатели всегда легче измерить.

      Снижение эффективности работы электродвигателя происходит по причине:

      • Электрических потерь. Это происходит в результате нагрева проводников от прохождения по ним тока.
      • Магнитных потерь. Вследствие излишнего намагничивания сердечника появляется гистерезис и вихревые токи, что важно учитывать в формуле мощности электродвигателя.
      • Механических потерь. Они связаны с трением и вентиляцией.
      • Дополнительных потерь. Они появляются из-за гармоник магнитного поля, так как статор и ротор имеют зубчатую форму. Также в обмотке присутствуют высшие гармоники магнитодвижущей силы.

      Следует отметить, что КПД является одним из самых важных компонентов формулы расчета мощности электродвигателя, так как позволяет получить цифры, наиболее приближенные к действительности. В среднем этот показатель варьирует от 10% до 99%. Она зависит от конструктивного устройства механизма.

      Работа и мощность

      Теперь остановимся на таком понятии как «работа», которое в данном контексте имеет особое значение. Работа совершается всякий раз, когда сила - любая сила - вызывает движение. Работа равна силе, умноженной на расстояние. Для линейного движения мощность выражается как работа в определенный момент времени.

      Если мы говорим о вращении, мощность выражается как вращающий момент (T), умноженный на частоту вращения (w).

      Частота вращения объекта определяется измерением времени, за которое определённая точка вращающегося объекта совершит полный оборот. Обычно эта величина выражается в оборотах в минуту, т.е. мин-1 или об/мин. Например, если объект совершает 10 полных оборотов в минуту, это означает, что его частота вращения: 10 мин-1 или 10 об/мин.


      Итак, частота вращения измеряется в оборотах в минуту, т.е. мин-1.

      Приведем единицы измерения к общему виду.


      Для наглядности возьмём разные электродвигатели, чтобы более подробно проанализировать соотношение между мощностью, вращающим моментом и частотой вращения. Несмотря на то, что вращающий момент и частота вращения электродвигателей сильно различаются, они могут иметь одинаковую мощность.


      Например, предположим, что у нас 2-полюсный электродвигатель (с частотой вращения 3000 мин-1) и 4-полюсной электродвигатель (с частотой вращения 1500 мин-1). Мощность обоих электродвигателей 3,0 кВт, но их вращающие моменты отличаются.


      Таким образом, вращающий момент 4-полюсного электродвигателя в два раза больше вращающего момента двухполюсного электродвигателя с той же мощностью.

      Момент электродвигателя

      Мощность [кВт или л.с.] связывает вращающий момент с частотой вращения, чтобы определить общий объём работы, который должен быть выполнен за определенный промежуток времени.

      Рассмотрим взаимодействие между вращающим моментом, мощностью и частотой вращения, а также их связь с электрическим напряжением на примере одного из двигателей. Электродвигатели имеют одну и ту же номинальную мощность как при 50 Гц, так и при 60 Гц.


      Это влечёт за собой резкое снижение вращающего момента при 60 Гц: частота 60 Гц вызывает 20%-ное увеличение числа оборотов, что приводит к 20%-ному уменьшению вращающего момента. Большинство производителей предпочитают указывать мощность электродвигателя при 60 Гц, таким образом, при снижении частоты тока в сети до 50 Гц электродвигатели будут обеспечивать меньшую мощность на валу и вращающий момент. Электродвигатели обеспечивают одинаковую мощность при 50 и 60 Гц.

      Графическое представление вращающего момента электродвигателя изображено на рисунке.


      Иллюстрация представляет типичную характеристику вращающий момент/частота вращения. 

      Режимы работы электродвигателей

      Режим работы определяет нагрузку на электродвигатель. В некоторых случаях она остается практически неизменной, в других может изменяться. Характер предполагаемой нагрузки обязательно учитывается при выборе двигателя. Действующими стандартами предусмотрены следующие режимы эксплуатации:

      Режим S1 (продолжительный). При таком режиме эксплуатации нагрузка остается постоянной в течение всего времени, пока температура электродвигателя не достигнет необходимого значения. Мощность привода рассчитывается по формулам, приведенным выше.

      Режим S2 (кратковременный). При эксплуатации в этом режиме, температура двигателя, в период его включения, не достигает установившегося значения. За время отключения электродвигатель охлаждается до температуры окружающей среды. При кратковременном режиме эксплуатации необходимо проверять перегрузочную способность электропривода.

      Режим S3 (периодически-кратковременный). Электродвигатель работает с периодическими отключениями. В периоды включения и отключения его температура не успевает достигнуть заданного значения или охладиться до температуры окружающей среды. При расчете мощности двигателя обязательно учитывается продолжительность пауз и потерь в переходные периоды. При выборе электродвигателя важным параметром является допустимое количество включений за единицу времени.

      Режимы S4 (периодически-кратковременный, с частыми пусками) и S5 (периодически-кратковременный с электрическим торможением). В обоих случаях работа двигателя рассматривается по тем же параметрам, что и в режиме эксплуатации S3.

      Режим S6 (периодически-непрерывный с кратковременной нагрузкой). Работа электродвигателя в данном режиме предусматривает эксплуатацию под нагрузкой, чередующуюся с холостым ходом.

      Режим S7 (периодически-непрерывный с электрическим торможением).

      Режим S8 (периодически-непрерывный с одновременным изменением нагрузки и частоты вращения).

      Режим S9 (режим с непериодическим изменением нагрузки и частоты вращения).

      Большинство моделей современных электроприводов, эксплуатируемых продолжительное время, адаптированы к изменяющемуся уровню нагрузки.

      На что влияет мощность электродвигателя (кВт)

      Помимо производительности приводных механизмов, от мощности двигателя напрямую зависят также его габаритные размеры. При этом важно учитывать, что при одинаковом количестве кВт мотор может иметь разную частоту вращения вала (это может быть 750; 1000; 1500 или 3000 оборотов/минуту).

      С увеличением этого показателя при одинаковой мощности, габариты машины будут уменьшаться. Также стоит учитывать, что электродвигатели, выпускаемые по стандарту DIN, в сравнении с мотором той же мощности, изготовленной по ГОСТ, будут на один габаритный размер больше. При этом частота вращения вала у них также будет одинаковой.

      Области применения электродвигателей

      Электродвигатели являются крупнейшими потребителями электроэнергии в мире, на них приходится около 45% от всей потребляемой электроэнергии.

      • Электродвигатели используются повсеместно, основные области применения:промышленность: насосы, вентиляторы, компрессоры, конвейеры, движущая сила для других машин и др.
      • строительство: насосы, вентиляторы, конвейеры, лифты, системы отопления, вентиляции и кондиционирование воздуха и др.
      • потребительские устройства: холодильники, кондиционеры, персональные компьютеры и ноутбуки (жесткие диски, вентиляторы), пылесосы, стиральные машинки, миксеры и др.
      • Комментарии
      Загрузка комментариев...
      Назад к списку
      • Контроллеры 2
      • Мотор - Редукторы 14
      • Преобразователи частоты 4
      • Приводные цепи 1
      • Промышленные домкраты 1
      • Редукторы 18
      • Сервоприводы 2
      • Устройства плавного пуска 1
      • Электродвигатели 49
      Каталог
      Сервис
      Акции
      Компания
      Информация
      Контакты
      8 (495) 122-20-33
      8 (495) 122-20-33
      Заказать звонок
      E-mail
      zakaz@reductors.com
      Адрес
      Центральный офис
      117342, Город Москва,
      вн.тер.г. муниципальный округ Коньково,
      ул Обручева, д. 52, стр. 3

      Сборочное производство и основной склад
      440067, г. Пенза, ул. Чаадаева, д.46
      Режим работы
      Пн. – Пт.: с 9:00 до 18:00
      Заказать звонок
      zakaz@reductors.com
      Центральный офис
      117342, Город Москва,
      вн.тер.г. муниципальный округ Коньково,
      ул Обручева, д. 52, стр. 3

      Сборочное производство и основной склад
      440067, г. Пенза, ул. Чаадаева, д.46
      © 2025 ООО «Системы электропривода». Все права защищены

      Создание и продвижение сайта - Legend
      Политика конфиденциальности
      Главная Поиск Каталог Акции Контакты Сервис Полезное Компания Сертификаты Реквизиты