Планетарная передача
Общие сведения о планетарных передачах
Для передачи вращательного движения и изменения угловых скоростей часто используют планетарные передачи, в основе которых используются зубчатые колеса – шестерни.
Механизм был изобретен еще в 11 веке арабским конструктором Ибн Халафом эль-Муради. В манускриптах средневекового ученого описана первая элементарная конструкция передачи вращательного движения.
Устройство чаще всего используется в редукторах для изменения получаемого вращательного движения и мощности. Механизм воздействует на получаемый крутящий момент и способен:
- складывать;
- изменять;
- раскладывать.
Простыми словами, он предназначен для увеличения или понижения крутящего момента, его изменения в противоположную сторону. Не все знают, что конструкция подобного типа используется для обеспечения плавного поворота транспортных средств.
Планетарный однопоточный или двухпоточный механизм поворота помогает при дополнительной помощи ленточного тормоза, передает мощность к ведущим колесам.
Если в планетарной передаче сделать подвижными все звенья, т. е. оба колеса и водило, то такую передачу называют дифференциальной.
С помощью дифференциального механизма можно суммировать движение двух звеньев на одном или раскладывать движение одного звена на два других. Например, в дифференциале заднего моста автомобиля движение от водила Н передают одновременно колесам 1 и 3, что позволяет при повороте одному колесу вращаться быстрее другого.
Устройство планетарной передачи
Передача крутящего момента при помощи зубчатых шестерен чаще всего применяется в редукторах. Для того чтобы понять, как работает простой планетарный однорядный редуктор, необходимо изучить состав его элементов и схему работы.
Основными элементами планетарной передачи можно считать следующие:
- Солнечная шестерня: находится в центре;
- Водило: жёстко фиксирует друг относительно друга оси нескольких планетарных шестерён (сателлитов) одинакового размера, находящихся в зацеплении с солнечной шестерней;
- Кольцевая шестерня: внешнее зубчатое колесо, имеющее внутреннее зацепление с планетарными шестернями.
Механизм состоит из шестерен, и принцип работы их заключается в изменении скоростей при разнонаправленном движении элементов.
Солнце (шестерня находится в середине механизма) двигается вокруг своей оси. Сателлиты коробки (малые шестеренки, обычно их несколько) вращаются вокруг солнца. Основу, внутри которой находятся все части, представляет коронная шестеренка. Водило служит для приведения сателлитов в движение.
Как работает планетарный редуктор
Работа планетарной передачи простейшей конструкции в случае остановленного эпицикла происходит следующим образом. Во вращение приводится солнечная шестерня. Вместе с ней начинают поворачиваться сцепленные с ней сателлиты. По мере того как сателлиты поворачиваются, они перекатываются по солнечной шестерне и по эпициклу. Тем самым они перемещаются вокруг солнечной шестерни, приводя во вращение водило, на котором закреплены оси сателлитов.
Конструкция планетарного механизма позволяет работать не только с остановленным эпициклом, используя в качестве входа солнечную шестерню, а в качестве выхода – водило. Из трёх перечисленных элементов: солнечная шестерня – водило – эпицикл любые два можно использовать как вход или как выход, а оставшийся третий – затормозить. Планетарная передача при таких способах включения всё равно будет работать, изменится лишь передаточное отношение как по величине, так и по знаку. Всего возможно шесть подобных способов включения, но наиболее широко применяется описанный выше: вход – солнечная шестерня, выход – водило, эпицикл – неподвижен. Такое включение имеет самое большое передаточное отношение из всех имеющихся способов.
Если в планетарном механизме вращаются и солнечная шестерня и водило и эпицикл, то механизм начинает работать как дифференциал, позволяя производить сложение угловых скоростей на разных входах или их разложение угловой скорости на два различных выхода.
Разновидности планетарных передач
По количеству ступеней планетарные механизмы разделяют на:
- однорядные;
- многорядные.
Планетарная передача из одной солнечной шестерни, одновенцовых сателлитов, водила и эпицикла будет однорядной. Замена сателлитов на двухвенцовые усложняет конструкцию, делая её двухрядной.
Многоступенчатая планетарная коробка передач — это последовательно установленные однорядные блоки. Такая схема позволяет суммировать передаточные числа и получать большие значения. 4-скоростные АКПП состоят из двухрядных планетарных конструкций, 8-скоростные — из четырёхрядных.
В АКПП применяют схемы, названные в честь изобретателей:
- Механизм Уилсона представляет собой трёхрядную конструкцию, в которой соединены корона первого, водило второго и корона третьего рядов. Количество передач — 5 прямых и 1 задняя.
- Механизм Лепелетье состоит из 3 соосно расположенных простых планетарных передач. Количество передач — 6 прямых и 1 задняя.
- Схема Симпсона — 2 редуктора с общей солнечной шестернёй. Водило второго ряда оборудовано тормозом. Корона первого ряда и солнце через две блокировочные муфты жёстко соединены с ведущим валом. Механизм реализует режимы: нейтраль; 1,2,3 передачи; задний ход.
По типу зубчатых конструкций планетарные редукторы делятся на:
- цилиндрические;
- конические;
- волновые;
- червячные.
Разные типы применяют для передачи момента между валами, расположенными параллельно или под углом. А также в механизмах, требующих низкой или высокой кинематической характеристики.
По показателю сложности планетарного редуктора выделяют два основных типа:
- Простые.
- Дифференциальные.
Простые и сложные устройства
Как уже отмечалось выше, схема планетарного механизма всегда включает водило и два центральных колеса. Сателлитов может быть сколько угодно. Это, так называемое, простое или элементарное устройство. В таких механизмах конструкции могут быть такими : "СВС", "СВЭ", "ЭВЭ", где:
- С - солнце.
- В - водило.
- Э - эпицентр.
Каждый такой набор колес + сателлиты называется планетарным рядом. При этом все колеса должны вращаться в одной плоскости.
Передаточное число планетарных передач
Передаточным называют отношение частоты ведущего вала планетарной передачи к частоте ведомого. Визуально определить его значение не получится. Механизм приводится в движение разными способами, а значит передаточное число в каждом случае различно.
Для расчёта передаточного числа планетарного редуктора учитывают число зубьев и систему закрепления. Допустим, у солнечной шестерни 24 зуба, у сателлита — 12, у короны — 48. Водило закреплено. Ведущим становится солнце.
Сателлиты начнут вращаться со скоростью, передаваемой солнечной шестернёй. Передаточное отношение равно: -24/12 или -2. Результат означает, что планеты вращаются в противоположном направлении от солнца с угловой скоростью 2 оборота. Сателлиты обкатывают корону и заставляют её обернуться на 12/48 или ¼ оборота. Колёса с внутренним закреплением вращаются в одном направлении, поэтому число положительное.
Общее передаточное число равно отношению числа зубьев ведущего колеса к количеству зубьев ведомого: -24/48 или -1/2 оборота делает корона относительно солнца при зафиксированном водиле.
При определение передаточного числа планетарной передачи используют метод остановки водила (метод Виллиса).
По этому методу всей планетарной передаче мысленно сообщается дополнительное вращение с частотой вращения водила nН, но в обратном направлении. При этом водило как бы останавливается, а закрепленное колесо освобождается. Получается так называемый обращенный механизм, представляющий собой обычную непланетарную передачу, в которой геометрические оси всех колес неподвижны.
Сателлиты при этом становятся промежуточными (паразитными) колесами, т. е. колесами, не влияющими на передаточное число всего механизма.
Передаточное число в обращенном механизме определяется как в двухступенчатой передаче с одним внешним и вторым внутренним зацеплением.
Здесь существенное значение имеет знак передаточного числа. Передаточное число считают положительным, если в обращенном механизме ведущее и ведомое звенья вращаются в одну сторону, и отрицательным, если в разные стороны. Так, для обращенного механизма передачи имеем:
u = u1×u2 = (-n1/n2)×(-n2/-n3) = (-z2/z1)×(z3/z2) = - z3/z1,
где z – числа зубьев колес.
В рассматриваемом обращенном механизме знак минус показывает, что колеса 2 и 3 вращаются в обратную сторону по отношению к колесу 1.
В качестве примера определим передаточное число для планетарной передачи, при передаче движения от колеса 1 к водилу Н. Мысленная остановка водила в этой передаче равноценна вычитанию его частоты nН из частоты вращения колес.
Тогда для обращенного механизма этой передачи имеем:
u’ = (n1 – n2)/(n3 – nН) = - z3/z1,
где (n1 – nН) и (n3 – nН) – частоты вращения колес 1 и 3 относительно водила Н;
z1 и z3 – числа зубьев колес 1 и 3.
Для планетарной передачи, у которой колесо 3 закреплено в корпусе неподвижно (n3 = 0), колесо 1 является ведущим, а водило Н – ведомым.
Тогда получим передаточное число такой передачи:
(n1 – nН)/(- nН) = - z3/z1;
- n1/nН+ 1 = -z3/z1
или
u = n1/nН= 1 + z3/z1.
Расчет на прочность планетарных передач
Прочностной расчет планетарных передач проводят как и для цилиндрических зубчатых передач. Вычисляют каждое зацепление:
- внешнее — между солнцем и планетными колёсами;
- внутреннее — между планетами и короной.
Если колёса изготовлены из одного материала, а силы в зацеплении равны, рассчитывают наименее прочное соединение — внешнее.
Алгоритм расчета следующий:
- Выбирают схему редуктора.
- Определяют исходные данные: передаточное число i, крутящий момент Твых и частоту вращения выходного вала Uвых.
- Подбирают число зубьев с проверкой условий сборки и соседства планетных шестерней.
- Рассчитывают угловые скорости колёс.
- Вычисляют КПД и моменты выходных валов.
- Рассчитывают прочность зацепления.
В расчёте момента учитывают количество планетных колёс и неравномерное нагружение их зубьев. Вводят поправочный коэффициент η =1,5…2, если меры выравнивания отсутствуют:
- повышенная точность изготовления;
- радиальная подвижность солнца, короны или водила;
- применение упругих элементов.
Расчёт зубчатых передач выполняют по двум критериям:
- контактная прочность, т.е. выносливость рабочих поверхностей зубьев под нагрузкой;
- напряжение на изгиб, усталостный излом.
Расчет контактной прочности сводится к проверке условия, что напряжение σн не превышает допустимого значения. Вычисления проводят по формуле Герца для цилиндрических поверхностей, добавляя уточняющие коэффициенты. В результате получают значение межосевого расстояния — главную геометрическую характеристику зубчатой передачи:
d=K×η×∛ (T×Kн(i±1))/(Ψ×i×[σн]^2),
где K — вспомогательный коэффициент для прямозубых колёс, МПа;
η — коэффициент неравномерности;
Т — вращающий момент, Н×мм;
Kн — коэффициент нагрузки;
Ψ — коэффициент ширины колеса равный 0,75;
i — передаточное число;
[σн] — допускаемое контактное напряжение, МПа. Определяется коэффициентом долговечности и пределом выносливости.
После определения геометрии передачи проверяют условие прочности:
σн= {310/(d×i)}×√ (T×Kн(i+1)^3)/(Ψ×d) ≤ [σн]
При расчёте на изгиб принимают условие, что вся нагрузка передаётся одной паре зубьев и приложена к его вершине. Расчётное напряжение не должно превышать допускаемое:
σf= (M/W) – (F/(b×s) ≤ [σf],
где М — изгибающий момент;
W — осевой момент сопротивления;
F — сила сжатия;
b, s — размеры зуба в сечении;
[σf] — допускаемое напряжение изгиба. Зависит от предела выносливости, шероховатости, погрешности изготовления зубьев.
Подбор чисел зубьев планетарных передач
Число зубьев колёс подбирают на первом этапе расчёта планетарной схемы по заранее установленному передаточному отношению. Особенность проектирования планетарного ряда заключается в соблюдении требований правильной сборки, соосности и соседства механизма:
- зубья сателлитов должны совпадать с впадинами солнца и эпицикла;
- планеты не должны задевать друг друга зубьями. На практике более 6 сателлитов не используют из-за трудностей равномерного распределения нагрузки;
- оси водила, солнечного и коронного колёс должны совпадать.
Основное соотношение подбора зубьев передачи через передаточное число выглядит так:
i = 1+Zкорона/Zсолнце,
где i — передаточное число;
Zn — количество зубьев.
Условие соосности соблюдается при равных межосевых расстояниях солнечного колеса, короны и водила. Для простой планетарной зубчатой передачи проверяют межосевые расстояния между центральными колёсами и сателлитами. Равенство должно удовлетворять формуле:
Zкорона= Zсолнце+2×Zсателлит.
Чтобы между планетами оставался зазор, сумма радиусов соседних шестерней не должна превышать осевое расстояние между ними. Условие соседства с солнечным колесом проверяют по формуле:
sin (π/c)> (Zсателлит+2)/(Zсолнце+Zсателлит),
где с — количество сателлитов.
Планетные колёса размещаются равномерно, если соотношение зубьев короны и солнца к количеству сателлитов окажется целым:
Zсолнце/с = Z;
Zкорона/с = Z,
где Z — целое число.
От планетарной передачи к планетарному редуктору
На практике планетарная передача используется как основной элемент для построения планетарных редукторов. В состав редуктора помимо самой передачи входят корпус, опорные подшипники, входной и выходной вал (или иные элементы для подключения вала двигателя и вала нагрузки).
Поскольку передаточное отношение планетарной передачи описанной конструкции чаще всего находится в диапазоне от 3 до 7, то для получения более высоких передаточных отношений применяют последовательное соединение нескольких планетарных механизмов. Получившийся в результате многоступенчатый редуктор может иметь передаточное отношение до нескольких тысяч и даже десятков тысяч.
Варианты планетарного редуктора: отличия друг от друга
Планетарные редукторы имеют большое количество разновидностей, отличающихся друг от друга по самым различным признакам. Отличия могут заключаться в конструктивной схеме – несколько солнечных шестерён, водил или эпициклов, вместо одной солнечной шестерни, одного водила и одного эпицикла в простейшем варианте редуктора. В некоторых вариантах редукторов плоскости вращения различных планетарных колёс могут быть не параллельны друг другу (пространственные планетарные механизмы).
Для построения планетарного редуктора могут быть использованы различные виды зубчатых колёс: прямозубые, косозубые, шевронные, конические. Использование каждого из этих видов зубчатых колёс может придать редуктору особенные свойства. Например, косозубые зубчатые колёса могут быть использованы для построения малошумных редукторов.
Количество сателлитов также может изменяться. Обычно используется от трёх (наиболее распространённый вариант) до шести сателлитов (выходные ступени компактных высоконагруженных редукторов). Форма сателлитов также может быть различной – например двухвенцовые зубчатые колёса в планетарных редукторах, построенных по сложным конструктивным схемам или разрезные подпружиненные зубчатые колёса в редукторах с пониженным люфтом.
Принцип работы планетарного редуктора
Принцип действия планетарного редуктора основан на вращении шестеренок, среди которых есть сателлиты, а также солнечная и коронная шестерни. Солнечная шестерня в планетарной передаче находится в центре, а шестерни-сателлиты, объединённые водилом, вращаются вокруг неё. Коронная шестерня располагается снаружи сателлитов.
- В одноступенчатой планетарной передаче один из видов шестерней – это могут быть как солнечная или коронная шестерня, так и водило сателлитов – имеет жёсткое закрепление и является звеном, передающим усилие.
- В многоступенчатом планетарном редукторе жесткое закрепление могут иметь несколько видов шестерней.
- Закрепление элемента в планетарном редукторе может быть как жёстким, так и дифференциальным. Второй способ закрепления даёт редуктору возможность самостоятельного изменения вращений, происходящих благодаря усилиям, прилагающимся к валам.
Рассмотрим принцип работы планетарной передачи с жёстко закреплённой коронной шестерней. В данном случае крутящий момент от входного вала подаётся на солнечную шестерню, которая, в свою очередь, передаёт вращение сателлитам, а те, проходя по коронной шестерне, вращают водило. Крутящий момент выходному валу в таком случае передаётся водилом.
Особенность устройства механизма такого типа позволяет выделить основные преимущества планетарного редуктора, среди которых:
- низкий уровень шума;
- плавность хода;
- отличный КПД, достигающий 97%;
- небольшой вес;
- малые габариты, обеспечивающиеся расположением шестерней на одной оси и в непосредственной близости друг от друга;
- длительный срок службы, обеспечивающийся маленькой нагрузкой на зубья благодаря их большому числу;
- большое передаточное число – благодаря сниженной нагрузке на зубья и большому количеству шестерней, имеющих разный размер.
Область применения планетарных передач
Планетарная схема используется в:
- редукторах;
- автоматических и механических коробках передач;
- в приводах летательных аппаратов;
- дифференциалах машин, приборов;
- ведущих мостах тяжёлой техники;
- кинематических схемах металлорежущих станков.
Планетарную коробку передач применяют в агрегатах с переменным передаточным отношением, затормаживая водило. В гусеничной технике для сложения потоков мощности элементы в планетарном механизме не блокируют.
При этом передаточное число такой КПП может изменяться путем поочередного торможения различных звеньев (например, водила или одного из колес), в дифференциалах автомобилей, тракторов и т. п.
Широкое применение планетарные передачи нашли в автоматических коробках передач автомобилей благодаря удобству управления передаточными числами (переключением передач) и компактности. Можно встретить планетарные передачи и в механизмах привода ведущих колес современных велосипедов. Часто применяют планетарную передачу, совмещенную с электродвигателем (мотор-редуктор, мотор-колесо).
Преимущества планетарных передач
Планетарная передача выигрывает у простых зубчатых механизмов аналогичной мощности компактным размером и массой, меньшей в 2 — 3 раза. Используя несколько планетных шестерней, достигается зацепление зубьев на 80%. Нагрузочная способность механизма повышается, а давление на каждый зубец уменьшается.
Кинематическая характеристика планетарного механизма доходит до 1000 с малым числом зубчатых колёс без применения многорядных конструкций. Помимо передачи планетарная схема способна работать как дифференциал.
За счёт соосности валов планетарного механизма, компоновать машины проще, чем с другими редукторами.
Применение планетарного ряда в АКПП снижает уровень шума в салоне автомобиля. Сбалансированная система имеет высокую вибропрочность за счет демпфирования колебаний. Соответственно, снижается вибрация кузова.
Недостатки планетарных передач
Недостатки планетарного механизма:
- сложное производство и высокая точность сборки;
- в сателлиты устанавливают подшипники, которые выходят из строят быстрее, чем шестерня;
- при повышении передаточных отношений, КПД падает, поэтому приходится усложнять конструкцию.